Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis of behavior of Ru with nitrogen oxide chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-005, 25 Pages, 2021/08

JAEA-Research-2021-005.pdf:2.91MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.

Journal Articles

Thermal mixing characteristics of helium gas in high-temperature gas-cooled reactor, 1; Thermal mixing behavior of helium gas in HTTR

Tochio, Daisuke; Fujimoto, Nozomu

Journal of Nuclear Science and Technology, 53(3), p.425 - 431, 2016/03

 Times Cited Count:1 Percentile:10.6(Nuclear Science & Technology)

The future HTGR is now designed in JAEA. The reactor has many merging points of helium gas with different temperature. It is needed to clear the mixing characteristics of helium gas at the pipe in the HTGR from the viewpoint of structure integrity and temperature control. Previously, the reactor inlet coolant temperature was controlled lower than specific one in the HTTR due to lack of mixing of helium gas in the primary cooling system. Now the control system is improved to use the calculated bulk temperature of reactor inlet helium gas. In this paper, thermal-hydraulic analysis on the primary cooling system of the HTTR was conducted to clarify the mixing behavior of helium gas. As the result, it was confirmed that the mixing behavior of helium gas in the primary cooling system is mainly affected by the aspect ratio of annular flow path, and it is needed to consider the mixing characteristics of helium gas at the piping design of the HTGR.

JAEA Reports

Test Results and Post-Test Analysis of ROSA-IIIRUN703

*; Koizumi, Yasuo; Soda, Kunihisa

JAERI-M 8588, 107 Pages, 1979/12

JAERI-M-8588.pdf:2.59MB

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1